Sulfated HNK-1 Epitope in Developing and Mature Kidney: A New Marker for Thin Ascending Loop of Henle and Tubular Injury in Acute Tubular Necrosis

Author:

Allory Yves12,Commo Frédéric3,Boccon-Gibod Liliane24,Sibony Mathilde23,Callard Patrice23,Ronco Pierre12,Debiec Hanna12

Affiliation:

1. Institut National de la Santé et de la Recherche Médicale U702 (INSERM), Paris, France

2. Paris 6 University, Paris, France

3. Department of Pathology, Tenon Hospital, Assistance-Publique Hôpitaux, Paris, France

4. Department of Trousseau Hospital, Assistance-Publique Hôpitaux, Paris, France

Abstract

The HNK-1 carbohydrate epitope is a 3-sulfo-glucuronyl residue attached to lactosamine structures on glycoproteins, proteoglycans, or glycolipids mostly expressed in the nervous system. Here, using monoclonal antibodies against the sulfated HNK-1 carbohydrate epitope, we first examined its distribution in developing and adult kidneys, then its expression in kidneys with tubular necrosis and renal neoplasms. This HNK-1 epitope was expressed in the human, rabbit, and rat, but not mouse kidney. It was detected within a subset of epithelial cells in the renal vesicle and in comma- and S-shaped bodies during early stages of nephrogenesis. In ureteral bud derivatives, the epitope was present transiently in the area where the collecting duct fused with the nephron. In the adult kidney, expression of the HNK-1 epitope became mainly restricted to the thin ascending loop of Henle where this epitope was carried by heparan- and chondro-proteoglycan. In pathological conditions, HNK-1 epitope expression increased dramatically in proximal epithelial tubule cells in kidneys with acute tubular necrosis. In tumors, the HNK-1 epitope was expressed in the epithelial component of nephroblastomas and in a subgroup of papillary renal cell carcinomas. These data suggest that molecules carrying the sulfated HNK-1 carbohydrate epitope may play an important role in critical stages of renal development and in the physiology of thin ascending loop of Henle. (J Histochem Cytochem 54:575-584, 2006)

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3