The Open Microcirculation in Human Spleens

Author:

Steiniger Birte12,Bette Michael12,Schwarzbach Hans12

Affiliation:

1. Institute of Anatomy and Cell Biology (BS,MB)

2. Faculty of Mathematics and Computer Science (HS), University of Marburg, Marburg, Germany

Abstract

It has long been debated whether the red pulp of human spleens harbors an open or a closed microcirculation or both. To solve this issue, the authors differentially stained the endothelium in red pulp arterial microvessels and in venous sinuses using brightfield and fluorescence immunohistology with reagents against CD34 and CD141. Three-dimensional models of red pulp arterial microvessels and sinuses were derived from serial double-stained paraffin sections with the help of license-free open-access software. In each model, arterial microvascular ends were traced and verified by reference to the original serial sections. In total, 142 ends were analyzed in the specimens of three individuals. None of these ends was connected to a sinus, suggesting that the human splenic red pulp harbors an entirely open circulatory system. Thus, the spleen is the only human organ where blood passes through spaces not lined by endothelia or other barrier-forming cells.

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3