Ovarian Abnormalities in a Mouse Model of Fragile X Primary Ovarian Insufficiency

Author:

Hoffman Gloria E.12345,Le Wei Wei12345,Entezam Ali12345,Otsuka Noriyuki12345,Tong Zhi-Bin12345,Nelson Lawrence12345,Flaws Jodi A.12345,McDonald John H.12345,Jafar Sanjeeda12345,Usdin Karen12345

Affiliation:

1. Department of Biology, Morgan State University, Baltimore, Maryland (GEH,WWL,SJ)

2. Laboratory of Molecular and Cell Biology, NIDDK, National Institutes of Health, Bethesda, Maryland (AE,KU)

3. Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan (NO)

4. Implantation and Oocyte Physiology Section, NICHD, National Institutes of Health, Bethesda, Maryland (Z-BT,LN)

5. Department of Comparative Biosciences, University of Illinois, Urbana, Illinois (JAF)

Abstract

FMR1 premutation (PM) alleles have 55–200 CGG·CCG-repeats in their 5′ UTR. PM carriers are at risk of fragile X–associated tremor and ataxia syndrome (FXTAS). Females are also at risk for FX primary ovarian insufficiency (FXPOI). PM pathology is generally attributed to deleterious properties of transcripts with long CGG-tracts. For FXPOI, hormone changes suggest a reduced residual follicle pool. Whether this is due to a smaller than normal original follicle pool or an increased rate of follicle depletion is unclear. A FX-PM mouse the authors generated with 130 CGG·CCG-repeats in the endogenous Fmr1 gene recapitulates features of FXTAS. Here the authors demonstrate that the gross development of the ovary and the establishment of the primordial follicle pool is normal in these mice. However, these animals show a faster loss of follicles of all follicle classes, suggesting that the problem is intrinsic to the ovary. In addition, many oocytes show aberrant nuclear accumulation of FMRP and elevated levels of ubiquitination. Furthermore, PM follicles are smaller and have fewer granulosa cells (GCs) than normal. Thus, these animals have ovarian abnormalities involving both the oocytes and GCs that may shed light on the molecular basis of FXPOI in humans.

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3