Quantification of the Extracellular Matrix Molecule Thrombospondin 1 and Its Pericellular Association in the Brain Using a Semiautomated Computerized Approach

Author:

Liu Jessie R.1,Modo Michel2

Affiliation:

1. Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania

2. Department of Radiology, McGowan Institute for Regenerative Medicine and Centre for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania

Abstract

The structure and functions of the extracellular matrix (ECM), its spatial distribution and pericellular association of ECM molecules remain poorly understood. Colocalization of ECM molecules with cell phenotypes through immunohistochemistry can provide crucial insights into their juxtacrine signaling role as well as their structural relevance to tissue architecture. As manual quantification of images introduces intra- and inter-user bias and is cumbersome for high-throughput approaches, we implemented an automated high-throughput method to quantify the spatial distribution and cellular association of one ECM molecule, thrombospondin 1 (TSP1) with two major cell phenotypes, neurons, and astrocytes. The distribution of TSP1 was homogeneous throughout the striatum and cortex along the anterior–posterior axis. TSP1 occupied 8.85% of the striatum and 7.40% in the cortex. TSP1 also associated with 94.58% and 88.45% of neurons in the striatum and cortex. The association with astrocytes was significantly lower at 47.55% and 28.09%. These findings highlight the key role that TSP1 plays in neuron physiology in a healthy brain, but also highlights key regional difference in astrocytes secreting ECM molecules. The semiautomated approach implemented here will improve the throughput and reliability of measuring the distribution and cellular colocalization of ECM molecules.

Funder

National Institute of Health

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3