A Proteoglycan-Like Molecule Offers Insights Into Ground Substance Changes During Holothurian Intestinal Regeneration

Author:

Vázquez-Vélez Gabriel E.12345,Rodríguez-Molina José F.12345,Quiñones-Frías Mónica C.12345,Pagán María12345,García-Arrarás José E.12345

Affiliation:

1. Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas (GEV-V)

2. Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas (GEV-V)

3. Cellular and Molecular Pathology Graduate Program, University of Wisconsin–Madison, Madison, Wisconsin (JFR-M)

4. Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts (MCQ-F)

5. Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico (MP, JEG-A)

Abstract

Extracellular matrix remodeling is an essential component of regenerative processes in metazoans. Among these animals, holothurians (sea cucumbers) are distinguished by their great regenerative capacities. We have previously shown that fibrous collagen as well as other fibrous components disappear from the connective tissue (CT) early during intestinal regeneration, and later return as the organ primordia form. We now report on changes of the nonfibrous component of the CT. We have used Alcian Blue staining and an antibody, Proteoglycan Like-1 (PGL-1), that recognizes a proteoglycan-like antigen to identify the presence of proteoglycans in normal and regenerating intestines. Our results show that early in regeneration, the ground substance resembles that of the mesentery, the structure from where the new intestine originates. As regeneration proceeds, Alcian Blue staining and PGL-1 labeling reorganize, so that by 4 weeks the normal intestinal CT pattern is achieved. Together with our previous findings, the data suggest that CT components that might be detrimental to regeneration disappear early on, while those that might be beneficial to regeneration, such as proteoglycans, are present throughout the regenerative process.

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3