Zinc-secreting Paneth Cells Studied by ZP Fluorescence

Author:

Giblin Leonard J.1,Chang Christopher J.2,Bentley Anthony F.1,Frederickson Cathleen1,Lippard Stephen J.2,Frederickson Christopher J.1

Affiliation:

1. NeuroBioTex, Inc., Galveston, Texas

2. Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract

We have used a new family of zinc-specific-responsive fluorescent dyes (ZPs) to study the sequestration and secretion of zinc from Paneth cells, which are located in the bases of the crypts of Lieberkühn within the rat small intestine. Vivid ZP fluorescence zinc staining of Paneth cell secretory granules is seen in both cryostat sections and isolated crypts, providing firm evidence for a pool of labile (rapidly exchangeable) zinc within these cells. We further demonstrate that this ionic zinc pool is secreted under physiological conditions. In vivo stimulation of the small intestine by IP injection of the secretagogue pilocarpine results in discrete zinc staining within the lumens of subsequently isolated crypts, concomitant with a decrease in the zinc staining of Paneth cell granules located within the same crypts. In contrast, the secretion of zinc into the lumens of isolated crypts stimulated in vitro with either carbachol or LPS (lipopolysaccharide) is not observed. However, a distinct change in Paneth cell morphology, suggesting attempted secretion, is seen in response to the direct application of cholinergics but not LPS. These findings suggest that zinc is coreleased with other Paneth cell anti-microbials, and that the intact intestine is necessary for secretion into the crypt lumen.

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phosphate-storing organelle discovered in fruit flies;Nature;2023-05-03

2. Metallobiology of Lactobacillaceae in the gut microbiome;Journal of Inorganic Biochemistry;2023-01

3. Paneth cells as the cornerstones of intestinal and organismal health: a primer;EMBO Molecular Medicine;2022-12-27

4. Dietary nutrition regulates intestinal stem cell homeostasis;Critical Reviews in Food Science and Nutrition;2022-06-13

5. The Zinc-Sensing Receptor GPR39 in Physiology and as a Pharmacological Target;International Journal of Molecular Sciences;2021-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3