Recent Development of the Magnetic Shape Memory Materials Research in Finland

Author:

Söderberg Outi,Aaltio Ilkka,Ge Yanling,Soroka Alexandr,Niemi Raisa,Liu Xuwen,Hannula Simo-Pekka

Abstract

AbstractNi-Mn-Ga based magnetic shape memory (MSM) materials have been studied since 1998 in Finland at the Helsinki University of Technology (TKK, previously HUT). The large HUT-MSM-project resulted in MSM-alloys with high service temperature, 10 % field-induced-strain, as well as circumstances when and how a Ni-Mn-Ga alloy exhibits this phenomenon. The understanding of the structure and behavior of twin boundaries, and their role, for example, in the vibration damping and long-term actuation has been enhanced in the recent projects. Twin boundaries have been studied by XRD, by high-resolution transmission electron microscopy (HRTEM), and by in-situ straining in TEM, the last one in co-operation with the Institute of Physics in Prague (ASCR-IP), Czech Republic. The results obtained by neutron diffraction in co-operation with Hahn-Meitner-Institut Berlin, Institute for Metal Physics (IMP), Kiev, and Institut Laue-Langevin (ILL), Grenoble, have given new crystallographic information. Damping of Ni-Mn-Ga polymer composites has been proved to be excellent at high stiffness levels with the loss factor = 0.6 at E ≈ 1 GPa. This research was carried out in co-operation with the University of California Los Angeles (UCLA), USA. In the long-term actuation, a fatigue life of 2×109 has been recorded for a five-layered modulated Ni-Mn-Ga structure in mechanical cycling. The evolution of the MSM parameters during the long-term use is recorded and used as an input data for the models developed in the European MAFESMA co-operation. The search for alloys with wide stable thermal property range showing MSM effect has continued and alloys that are stable down to 4 K have been established. Modeling based on Ginsburg-Landau theory has been applied to evaluate aging and thermal fluctuations in the modulated Ni-Mn-Ga structures. As a commercial target, AdaptaMat Ltd. develops technology to produce Ni-Mn-Ga magnetic shape memory material with improved quality, lower twinning stress, longer fatigue life as well as lower cost and better availability for use in research and development.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3