Mechanical Behavior of Reactively Hot-Pressed Aluminide Matrix Composites

Author:

Inoue M.,Suganuma K.,Niihara K.

Abstract

ABSTRACTFeAl and Ni3Al matrix composites containing various fine particles were fabricated successfully by reactive hot-pressing. The strength and the fracture toughness of these composites at ambient temperatures were evaluated. The addition of β-SiC particles was effective for strengthening of the Fe-40at%Al matrix, however, an extreme decrease of fracture toughness occurred due to the suppression of stress relaxation effect by plastic deformation at a crack tip. The fracture toughness of the reactively hot pressed Fe-40at%Al and its composites was also affected by the environmental embrittlement effect. TiB2 and ZrB2 particles in the Fe-40at%Al matrix composites were clarified to play a role in the reduction of the environmental effect. For the Ni-25at%Al matrix, higher flexural strength was achieved by the addition of TiB2, TiC and TiN particles. TiB2 particles reacted with the matrix during hot-pressing. The Ni-25at%Al/TiB2 composite had a fracture strength of 1.5 GPa in spite of large grain size of the matrix. TiC and TiN were the best choices as effective reinforcing matrials for the Ni3Al matrix among the chemical compatible ones.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference6 articles.

1. Fabrication of Discontinuous Ceramic Fibers/FeAl Composites by Reactive Sintering

2. 4. Inoue M. , Nagao H. , Suganuma K. and Niihara K. , in preparation f or submitting

3. Discontinuously reinforced intermetallic matrix composites via XD synthesis

4. Identification of thermodynamically stable ceramic reinforcement materials for iron aluminide matrices

5. 6. Inoue M. , Takahashi K. , Suganuma K. and Niihara K. , in preparation for submitting

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3