The Influence of Implantation Conditions and Target Orientation in High Dose Implantation of Al+ into Si

Author:

Nam-Avar F.,Budnick J. I.,Fasihuddin A.,Hayden H. C.,Pease D. A.,Otter F. A.,Patarini V.

Abstract

ABSTRACTWe report the preliminary results of a study to determine the dependence of the near surface composition and structure on total dose, dose rate, vacuum condition and substrate orientation for Al implantation into Si (111) and Si (100) with doses up to 2 × 10l8 ions/cm2. Our studies include the results of Rutherford Back Scattering (RBS), Auger Electron Spectroscopy (AES) and x-ray diffraction measurements on samples implanted with a 100 keV energy in a diffusion pumped vacuum (DPV) system (10−6 Torr) with and without a LN2 trap and in an ultra high vacuum (UHV) system (2–4) x 10−8 Torr.Results of high dose rate (50 μA/cm2 ) implantation into Si (111) in an untrapped DPV system indicate that Al segregates with a preferred (111) orientation. For a dose of 1 × 1018 ions/cm2 the surface is Al-rich to a depth of 2500Å while for lower doses the surface is silicon-rich. A carbon build-yp occurred for samples prepared by low dose rate (5 μA/cm2 ) implantation. However, no Al segregation could be observed for doses of less than 1018 ions/cm2 . A similar behavior has been observed for Si (100) except that Al segregation occurs with a polycrystalline structure. Moreover, the segregated Al is present at depths greater than the projected range.When implantation was carried out in a DPV system with a LN2 trap, no carbon peaks could be observed by RBS regardless of the dose rate. For these conditions, as well as for the implantation of Al in an UHV system, we find Al segregation with a polycrystalline structure independent of the dose rates and target orientations we used. Al is observed at a depth greater by a factor of two than the expected value from the Rpcalculations. The Al depth penetration increases with the dose of implantation.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3