High-Efficient ZnO/PVD-CdS/Cu(In,Ga)Se2 Thin Film Solar Cells: Formation of the Buffer-Absorber Interface and Transport Properties

Author:

Rusu Marin,Glatzel Thilo,Kaufmann Christian A.,Neisser Axel,Siebentritt Susanne,Sadewasser Sascha,Schedel-Niedrig Thomas,Lux-Steiner Martha Ch.

Abstract

AbstractFor preparation of ZnO/CdS/Cu(In,Ga)Se2 solar cells, physical vapor deposition (PVD) was employed to deposit CdS buffer layers in ultrahigh vacuum on Se-decapped absorber surfaces, thus realizing an all ‘dry' fabrication process of the device. An 14.1% total area and 14.5% active area efficient ZnO/CdS/Cu(In,Ga)Se2 solar cell under AM1.5 conditions was achieved after annealing the as-prepared solar cells in air. Kelvin probe force microscopy (KPFM) measurements were carried out in-situ to monitor the initial growth of the CdS buffer layer on the absorber, as well as its electronic properties, in particular, the work function. It was observed that the PVD-CdS growth is initially inhibited at the absorber grain boundaries. Quantum efficiency measurements allowed us to suppose that during the initial growth stage a passivation of the grain boundaries occurs. The latter explains the higher short-circuit currents of the cells with PVD-CdS compared to their references with CdS grown by chemical bath deposition (CBD). The beneficial effect of the annealing seems to originate from a formation of a region with higher band gap than that of the absorber bulk and inverted conductivity type at the absorber surface, close to the CdS/Cu(In,Ga)Se2 interface, leading to a dramatic change in the electronic transport properties and finally, to a significant enhancement of the open-circuit voltage. Annealing of the ZnO/PVD-CdS/Cu(In,Ga)Se2 solar cells provides formation of PVDCdS/ Cu(In,Ga)Se2 interface with properties similar to that of reference samples with CBD-CdS.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3