Measurement of Ultrathin Film Mechanical Properties by Integrated Nano-scratch/indentation Approach

Author:

Bastawros Ashraf,Che Wei,Chandra Abhijit

Abstract

AbstractThe thickness and property measurements of thin films on a substrate are crucial for a wide range of applications. Classical techniques have relied on various physical properties to identify film thickness, independent of its mechanical properties. Here, a new experimental technique is devised to evaluate the film thickness, its stiffness and its flow stress. The technique utilizes the variation of the measured apparent modulus of a ductile film on a substrate from a nano-indentation experiment, in conjunction with the measured normal and tangential forces and the scratch depth in a nano-scratch experiment. These combined measurements are calibrated through a simple statically admissible model to yield the unknown quantities. The measurements reasonably agree with the finite element predictions and are ascertained by XPS film thickness measurements. The technique is applied to study the formed oxide nano-layer during copper chemical mechanical planarization process.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference12 articles.

1. 9 Che W. , PhD Thesis, Iowa State University, Ames, IA, 2005.

2. Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates

3. Materials Research Society Symposium - Proceedings;Tsui;Materials Reliability in Microelectronics VII,1997

4. Measurement and Interpretation of stress in aluminum-based metallization as a function of thermal history

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3