In situ high pressure XRD study on hydrogen uptake behavior of Pd-carbon systems

Author:

Bhat Vinay V,Gallego Nidia C,Contescu Cristian I,Payzant E Andrew,Rondinone Adam J,Tekinalp Halil,Edie Dan D

Abstract

AbstractEfficient storage of hydrogen for use in fuel cell-powered vehicles is a challenge that is being addressed in different ways, including adsorptive, compressive, and liquid storage approaches. In this paper we report on adsorptive storage in nanoporous carbon fibers in which palladium is incorporated prior to spinning and carbonization/activation of the fibers. Nanoparticles of Pd, when dispersed in activated carbon fibers (ACF), enhance the hydrogen storage capacity of ACF. The adsorption capacity of Pd-ACF increases with increasing temperature below 0.4 bar, and the trend reverses when the pressure increases. To understand the cause for such behavior, hydrogen uptake properties of Pd with different degrees of Pd-carbon contact (Pd deposited on carbon surface and Pd embedded in carbon matrix) are compared with Pd-sponge using in situ XRD under various hydrogen partial pressures (<10 bar).Rietveld refinement and profile analysis of diffraction patterns does not show any significant changes in carbon structure even under 10 bar H2. Pd forms β PdH0.67 under 10 bar H2, which transforms to α PdH0.02 as the hydrogen partial pressure is decreased. However, the equilibrium pressure of transition (corresponding to a 1:1 ratio of α and β phases) increases with increasing the extent of Pd-carbon contact. This pressure is higher for Pd embedded in carbon than for Pd deposited on carbon surface. Both these Pd-carbon materials have higher H2 desorption pressure than pure Pd, indicating that carbon “pumps out” hydrogen from PdHx and the pumping power depends on the extent of Pd-carbon contact. These results support the spillover mechanism (dissociative adsorption of H2 followed by surface diffusion of atomic H).

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3