Author:
Yang Jiun-Chan,Hwang Hsin-Yen,Chang Che-Chen
Abstract
AbstractThe influence of particle bombardment on surface reactivity is examined by using the reaction of CO on the Ni(111) surface as a model system. Thermal desorption studies shows that a large amount of residual CO may be deposited on the surface during ion bombardment. An appreciable amount of oxygen can be produced on the surface by collision-induced CO dissociation. A new dlesorption state of CO is also formed. The activation energy for CO desorption from this new state is estimated to be about 90 kJ/mol, which corresponds to a decrease of the C-Ni bond energy of 25 – 30 kJ/mol as the sample evolves from a smooth to a damaged state. The dipole-dipole repulsion is present between CO molecules adsorbed on the ion-bombarded surface, which causes CO to desorb at a lower temperature for higher CO exposures. Under similar bombardment conditions, the sticking probability of CO on the bombarded surface decreases with decreasing momentum of the impinging particle.
Publisher
Springer Science and Business Media LLC