Author:
Matthews M. J.,Dresselhaus M. S.,Endo M.,Sasabe Y.,Takahashi T.,Takeuchi K.
Abstract
Polyparaphenylene (PPP)-based carbons heat-treated at temperatures (THT) from 600 °C up to 3000 °C have been characterized both structurally and in terms of their physical properties. Special attention is given to PPP heat-treated at 700 °C (denoted by PPP-700), since samples heat-treated to this temperature were observed to have exceptionally high lithium affinities when electrochemically doped with Li. At low THT below 700 °C, it is found that the local structure of PPP-based samples can be characterized mostly in terms of a disordered polymer. As a result of heat treatment to high temperature, PPP-based carbon shows graphitization behavior with regard to x-ray diffraction d002 (graphite c-axis d-spacing) development and to the increase of the Raman IG/ID intensity ratio (where IG and ID are the integrated intensities of the 1580 cm−1 and 1360 cm−1 Raman modes, respectively), as is found in so-called graphitizing carbons. However, development of the c-axis crystallite size (Lc) is restricted to very small values, in the range of so-called nongraphitizing carbons, while the a-axis crystallite size (La) attains values up to roughly 120 Å for heat treatments near 3000 °C. These structural properties of PPP-based carbons are consistent with the observed electrical characteristics and their dependence on THT. Low temperature magnetic susceptibility measurements were analyzed, along with Raman spectra, allowing for the characterization of disorder in terms of localized spin states for several heat-treated PPP samples. By interpreting the results of these various characterization techniques, we are able to present an insightful perspective on the nature of PPP-based carbons and the role of PPP-700 as an effective lithium host material for secondary battery applications.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献