Author:
Song J. H.,Edirisinghe M. J.,Evans J. R. G.,Twizell E. H.
Abstract
The removal of binder from ceramic or metal moldings by thermolysis involves the transport of degradation products through the parent organic phase and the vacated porous body. A numerical model has been developed to combine an equation which takes into account different gas-flow regimes with an equation for the transport of organic molecules in molten polymers. Computer modeling reveals the critical heating rate above which defects occur due to boiling of the polymer-monomer solution at the center of the molding. The situation in which a porous outer layer of the molding develops, offering resistance to flow of the evolved monomer gas, is then treated. This gives rise to a moving boundary with a variable concentration of diffusant which is dependent on the surface flux, gas transport coefficient, and thickness of the porous layer. The contributions of diffusion and viscous flow to gas transport are considered.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献