Synthesis, morphology, and formation mechanism of mullite particles produced by ultrasonic spray pyrolysis

Author:

Janaćković Dj.,Jokanović V.,Kostić-Gvozdenović Lj.,Živković Lj.,Uskoković D.

Abstract

Submicrometer spherical particles of mullite powder were synthesized by ultrasonic spray pyrolysis of emulsion and solutions, using tetra-ethyl-orthosilicate (TEOS) or silicic-acid and Al(NO3)3 · 9H2O as initial compounds. Crystallization of mullite phase was determined by differential thermal (DT), thermogravimetric (TG), infrared (IR), and x-ray analyses. The synthesis of mullite from TEOS emulsion occurs by crystallization of γ–Al2O3 (or Al, Si-spinel) from the amorphous phase and its subsequent reaction with amorphous SiO2, as well as by crystallization of pseudotetragonal mullite below 1000 °C and its subsequent phase transformation into orthorhombic mullite. In the powders produced from silicic acid solutions, synthesis of mullite occurs only by crystallization of γ–Al2O3 between 900 and 1000 °C and its further reaction with amorphous SiO2 between 1100 and 1200 °C. Particle formation mechanism depended directly on the initial emulsion or solution preparation, i.e., on the phase separation in the emulsion and on the silicic-acid crosslinking conditions.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3