Mechanical properties and microstructural analysis of a diamond-like carbon coating on an alumina/glass composite

Author:

Christiansen S.,Albrecht M.,Strunk H. P.,Hornberger H.,Marquis P.M.,Franks J.

Abstract

We investigate the mechanical and microstructural properties of a diamond-like carbon coating (DLC) which is deposited by plasma enhanced chemical vapor deposition (PECVD) onto an alumina/aluminosilicate glass composite used for biomedical applications. Ball-on-ring tests yield a fracture strength that is essentially influenced by the surface topology/roughness. The surface topology of the coating is investigated by atomic force microscopy (AFM). Tribology tests and nanoindentation represent the wear resistance and hardness; these are properties that are mainly influenced by the microstructural properties of the DLC coating. This microstructure is investigated by transmission electron microscopy (TEM) and analyzed by parallel electron energy loss spectroscopy (PEELS). For the general applicability of the coated composite, the interfacial adhesion of the DLC coating on the comparably rough substrate (roughness amplitudes and wavelengths are in the micrometer range) is important. Therefore, we focus on TEM investigations that show the interface to be free of gaps and pores that we, together with a characteristic microstructure adjacent to the interface, relate to the excellent adhesion. The interlayer consists of a high density of SiC grains, part of them directly bound to the substrate, and part of them bound to other SiC grains. This interlayer is followed by an essentially different region of the coating as concerns the microstructure; this region consists of nanocrystalline diamond particles embedded in an amorphous carbon matrix. It is this heterogeneous microstructure to which we attribute (i) the good adhesion based upon the interface stabilizing SiC grains, and (ii) the high hardness and wear resistance based upon the diamond nanocrystals in the coating.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3