Author:
Yoon Sang-Young,Akatsu Takashi,Yasuda Eiichi
Abstract
Compressive creep deformation of hot-pressed silicon nitride with different amounts of grain boundary glassy phase was investigated at 1300–1400 °C under 30–100 MPa. The stress exponent of the creep rate was determined to be nearly unity. The apparent activation energy of silicon nitride with a larger amount of glassy phase was measured to be about 700 kJ/mole, and that with a smaller amount of glassy phase was found to be 400 kJ/mole. In addition, the microstructural observation found that no cavity appeared and grain boundary glass was recrystallized during creep test. Thus, the rate-limiting steps in solution/precipitation creep mechanism change from the solution-reprecipitation of Si3N4 grains to the diffusion through the grain boundary with increasing the amount of glassy phase.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献