Elasticity and fracture in particulate composites with strong and degraded interfaces

Author:

Lekatou A.,Faidi S. E.,Lyon S. B.,Newman R. C.

Abstract

Silane-coated glass microspheres randomly embedded in an epoxy polymer matrix have been employed as a model system to investigate the degradation of disordered composite materials by water, and to test various models of deformation and fracture. Numerous composites containing sodalime (A) glass in the range 0 to 25% by volume were tested dry and immersed in saturated NaCl at 40 °C for periods up to 70 days before testing. Enhanced osmotic water uptake due to percolating interface damage was observed for composites containing more than 15% glass. The electrical resistance of similar composites filled with conducting spheres confirmed the existence of a percolation transition, though with high resistance values implying no direct contact of the spheres. Tensile measurements conducted on dry material at a nominal strain rate of about 10−3 s−1 showed an increase in elastic modulus and a decrease in the fracture strength with increasing glass content. New detail was apparent in these curves and confirmed by statistical analyses. For wet specimens, in addition to a general embrittlement effect of water absorption, there was a distinct plateau or small peak in fracture strength in the range 9 to 12% glass, and an abrupt drop between 12 and 15%. The plateau can be related to favorable crack interaction effects between disconnected clusters of interfaces just below the percolation threshold. The steep increase in elastic modulus with glass content seen in the dry material vanished entirely in wet material, which behaved like a porous polymer above 6% glass, owing to osmotic interface damage within particle clusters.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3