Author:
Lu Chung-Hsin,Tsai Chien-Cheng
Abstract
The formation process of Ba(Mg1/3Ta2/3)O3 was confirmed to be a direct reaction between constituent compounds without the presence of intermediate compounds. Isothermal analysis of reaction kinetics indicated the controlling reaction to be a three-dimensional diffusion process. Based on the Ginstling–Brounshtein model, the activation energy of the formation process was estimated to be 257 kJ/mol. A new definition of the ordering parameter for Ba(Mg1/3Ta2/3)O3 was deduced to quantitatively evaluate the ordering degree. Raising sintering temperatures resulted in an increase in the ordering degree and bulk density of Ba(Mg1/3Ta2/3)O3. Reducing the barium content in Ba(Mg1/3Ta2/3)O3 substantially resulted in improved densification and enhanced ordering structure. On the other hand, an excess barium content in specimens hindered the progress of sintering, and also induced the disordering structure.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献