Author:
Ballato John,Dejneka Matthew,Riman Richard E.,Snitzer Elias,Zhou Weimin
Abstract
This paper describes ZBLA fluoride glass thin films produced via an inexpensive, low-temperature reactive atmosphere sol-gel approach. Luminescence from erbium at 1.55 μm has been observed in x-ray-amorphous doped films deposited on calcium fluoride, polyimide, sapphire, and silicon substrates. Fluorescence studies of the erbium 4S3/2 → 4I13/2 transition, a characteristic emission for a reduced phonon energy host, were conducted for both sol-gel-derived films and conventionally prepared glass rods. The peak intensity observed from the sol-gel films was blue-shifted by 16 nm with a FWHM value approximately half that measured for the melt-quenched rods. Excitation studies indicate that, unlike conventionally prepared glasses, sol-gel materials suffer from nonradiative relaxation of the 4S3/2 excited state to the 4I9/2 level, where subsequent radiative emission to the 4I15/2 ground state occurs. The proposed source of the quenching mechanism are remnant species inherent to the sol-gel process. While this causes the luminescence behavior of rare-earth-doped sol-gel-derived fluoride materials to be similar to oxide hosts, these remnant species modify the branching ratios, resultantly leading to a novel 824 nm emission when excited at 488 nm.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献