Abstract
Cubic (δ) bismuth oxide (Bi2O3) has been subjected to high temperature deformation over a wide range of temperatures and strain rates. Results indicate that bismuth oxide is essentially incapable of plastic deformation at temperatures below the monoclithic to cubic phase transformation which occurs at approximately 730 °C. Above the transformation temperature, however, Bi2O3 is extensively deformable. The variability of flow stress to temperature and strain rate has been quantified through the determination of phenomenological-based constitutive equations to describe its behavior at these high temperatures. Analysis of the so-determined deformation constants indicate an extremely strong sensitivity to strain rate and temperature, with values of the strain-rate sensitivity approaching values commonly cited as indicative of superplastic behavior.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献