Growth of CNxHy films by reactive magnetron sputtering of carbon in Ar/NH3 discharges

Author:

Sjöström H.,Lanford W.,Hjörvarson B.,Xing K.,Sundgren J-E.

Abstract

Results on hydrogenated carbon nitride (CNxHy) thin films grown by reactive magnetron sputtering in a mixed Ar/NH3 discharge are reported. Depending on the growth temperature (Ts) and negative substrate bias voltage (Vs), both the composition and the microstructure were altered. Using nuclear reaction analysis and resonant backscattering spectroscopy, the maximum N and H content were both 15 at. %. Both the hydrogen and nitrogen content of the films was found to decrease with increasing growth temperature. The results also show pronounced chemical resputtering effects, resulting in no net film growth for Vs > 75–100 V. X-ray photoelectron spectroscopy showed no signs of N bound to sp3 hybridized C. Also, the microstructure of the films was found to change with Ts. For Ts < 150 °C, a structure with crystalline clusters embedded in an “fullerene-like” matrix was observed by high-resolution transmission electron microscopy. Power-spectra obtained from the clusters could be identified with the cubic diamond structure. For Ts ≥ 300 °C, no crystalline clusters were found and the films had a homogeneous “fullerene-like” microstructure with strongly bent planes and closed shell-like features resembling bucky-onions. Evaluation of nanoindentation results from the homogeneous “fullerene-like” films gave hardness values between 7 and 11 GPa and elastic recoveries of 55–60%. This should be compared with hardness and elastic recoveries of 40–60 GPa and 85–90%, respectively, previously reported for on nonhydrogenated carbon nitride CNx films grown under the same conditions, but in pure N2 discharges.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3