Inversion domain boundaries in ZnO ceramics

Author:

McCoy M. A.,Grimes R. W.,Lee W. E.

Abstract

Inversion domain boundaries (IDB's) in ZnO ceramics, associated with Sb2O3 doping, have been characterized using a range of electron microscopy techniques. The IDB's lie primarily on basal planes, but frequently are stepped along prismatic planes. The basal IDB can be characterized as (i) an inversion that causes an antisite exchange of cations and anions across the boundary, (ii) an effective displacement of the sixfold screw axis in the wurtzite structure vectors by a translation of 1/3 and (iii) a displacement normal to the boundary. Significant Sb segregation is detected in the basal IDB segments in agreement with previous work, and in ceramics doped with Sb2O3 and Bi2O3. These IDB's contained both Sb and Bi, suggesting that while Bi does not participate in IDB nucleation, it resides in the boundary. Comparison of experimental and calculated HREM images suggests that the IDB is composed of a monolayer of Type I (111) zinc antimonate spinel, consisting of a single layer of octahedrally coordinated zinc and antimony cations.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3