Crystal growth of YBa2Cu3O7 by the SRL-CP method under low oxygen partial pressure atmosphere

Author:

Nakamura M.,Yamada Y.,Shiohara Y.

Abstract

Single crystals of YBa2Cu3O7−x (Y123) were grown by a modified top-seeded crystal pulling method using a BaO-CuO solution with the solid Y2BaCuO5 (Y211) as a solute in an yttria crucible [the so-called solute-rich liquid crystal pulling (SRL-CP) method] under 2% oxygen partial pressure atmosphere [P(O2) = 0.02 atm]. According to the pseudo-binary phase diagrams of Lee and Lee,1 the temperature of Y123 crystal growth was expected to be lower for 0.02 atm oxygen pressure than for 0.21 atm oxygen pressure. The single crystals grown under P(O2) = 0.02 atm and cooled under the same atmosphere after the separation of crystal from a solution had twins near the microcracks on the crystal surface. On the other hand, the single crystals grown under P(O2) = 0.02 atm and cooled under pure nitrogen atmosphere (6N) showed no twin structure. These results indicate that twins did not form during crystal growth but formed due to tetragonal-orthorhombic transition as a consequence of oxygenation at cooling under low oxygen partial pressure.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. YBCO and Some Other Rare Earth Cuprates;Growth and Characterization of Bulk Superconductor Material;2016

2. Crystallization Mechanisms of High Critical Temperature Superconductors;Handbook of Crystal Growth;2015

3. The decomposition of YBa2Cu3O7−δ doped into Ba2YRuO6;Journal of Applied Physics;2008-02

4. Top-seeded solution growth of Ca-doped YBCO single crystals;Journal of Crystal Growth;2002-04

5. Growth mechanism in the crystallization of YBa2Cu3O6+δfrom peritectic melts;Superconductor Science and Technology;2001-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3