On the role of ions in the formation of cubic boron nitride films by ion-assisted deposition

Author:

Mirkarimi P.B.,McCarty K.F.,Medlin D.L.,Wolfer W.G.,Friedmann T.A.,Klaus E.J.,Cardinale G.F.,Howitt D.G.

Abstract

We have investigated how ion irradiation can selectively promote the formation of dense sp3-bonded cubic boron nitride (cBN) over the graphite-like sp2-bonded phases. We have conducted a series of experiments using ion-assisted pulsed laser deposition in which either the ion mass (mion) or ion energy (E) was varied in conjunction with the ratio of ion flux to depositing atom flux (J/a). For a fixed ion energy and mass, there is a critical J/a above which cBN formation is initiated, a window of J/a values in which large cBN percentages are obtained, and a point at which J/a is so large that the resputter and deposition rates balance and there is no net film deposition, in agreement with Kester and Messier. As do Kester and Messier, we find that cBN formation is controlled by a combination of experimental parameters that scale with the momentum of the ions. However, unlike Kester and Messier, we do not find that cBN formation scales with the maximum momentum that can be transferred in a single binary collision, as either incorrectly formulated by Targove and Macleod and used by Kester and Messier, or as correctly formulated. Instead we observe that cBN formation best scales with the total momentum of the incident ions, (mionE)1/2. We also consider the mechanistic origins of this (mionE)1/2 dependence. Computer simulations of the interaction of ions with BN show that cBN formation cannot be simply scaled to parameters such as the number of atomic displacements or the number of vacancies produced by the ion irradiation. A critical examination of the literature shows that none of the proposed models satisfactorily accounts for the observed (mionE)1/2 dependence. We present a quantitative model that describes the generation of stress during ion-assisted film growth. The model invokes a kinetic approach to defect production and loss. We apply a simplified version of the model to cBN synthesis, and find that it predicts an approximate (mionE)1/2 dependence for cBN formation.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 205 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3