Decomposition of CO2 to carbon by H2-reduced Ni(II)- and Co(II)-bearing ferrites at 300 °C

Author:

Kodama T.,Kato H.,Chang S.G.,Hasegawa N.,Tsuji M.,Tamaura Y.

Abstract

Ni(II)- and Co(II)-bearing ferrites with different levels of metal substitution have been studied for CO2 decomposition. Ni2+ and Co2+ have been substituted for Fe2+ or Fe3+ in magnetite with the spinel type of crystal structure up to 14% and 26% for the mole ratio of Ni2+ and Co2+ to the total Fe contents, respectively. The metal substitution was corroborated by Mössbauer spectroscopy and XRD studies. They were activated in a flow of H2 gas to form oxygen-deficient ferrites with the spinel structure retained. The oxygen-deficient M(II)-bearing ferrites have been found to show high reactivity toward CO2 decomposition to carbon at 300 °C. The reactivity increased with the level of metal substitution and activation. The oxygens of CO2 were incorporated into the spinel structure and carbon was deposited on the surface of the ferrites. The deposited carbon was visible on dissolution of the ferrites used. The rate of decomposition on H2-activated Ni(II)-bearing ferrite with the mole ratio of 14% was 30 times as high as that of H2-activated magnetite.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference20 articles.

1. Hydrogenation of surface carbon on alumina-supported nickel

2. 2. Wagner R. C. , Carrasquillo R. , Edwards J. , and Holmes R. , Proc. 18th Intersociety Conference Environmental Systems (Society of Automotive Engineers, SAE Technical Paper Series 880995, 1988).

3. Catalytic behavior and phase composition change of iron catalyst in hydrogenation of carbon dioxide.

4. The formation of V-bearing ferrite by aerial oxidation of an aqueous suspension

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3