Rare gas bubbles in muscovite mica implanted with xenon and krypton

Author:

Hishmeh G.A.,Cartz L.,Desage F.,Templier C.,Desoyer J.C.,Birtcher R.C.

Abstract

Xenon and krypton have been implanted into muscovite mica at room temperature and at liquid nitrogen temperature. The behavior of the implanted Xe and Kr was followed by low-temperature transmission electron microscopy and energy dispersive x-ray analysis. An electron diffraction pattern of diffuse bands is observed at room temperature due to the presence of fluid rare gas and to noncrystalline mica. Visible cavities with diameters 10–300 nm formed in the Xe-implanted mica. Visible cavities in room-temperature Kr-implanted mica ranged from 5–50 nm in diameter. The gas pressures at room temperature in the cavities are estimated, assuming all of the implanted gas precipitated in cavities to be ∼10 MPa for Xe and ∼20 MPa for Kr. These pressures are considerably lower than found for rare gases implanted in metals and ceramics, but sufficient to liquefy the rare gases at room temperature. The Xe and Kr were observed by dark-field microscopy to form fcc crystalline solids within the cavities at temperatures below their triple points, with lattice parameters of a(xe) = 0.630 ± 0.0015 nm and a(Kr) = 0.565 ± 0.005 nm. The solid Xe within bubbles was unstable under the electron beam of the transmission electron microscope at temperatures above 80 K, while the solid Kr within bubbles was unstable at temperatures as low as 35 K. The crystalline mica matrix undergoes a transformation from a crystalline structure to an amorphous structure as a result of implantation.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference32 articles.

1. 20 Eby R. K. , Ph.D. Thesis, University of New Mexico, Albuquerque, NM (1990).

2. Specimen temperature increases during transmission electron microscopy

3. 15 Guggenheim S. , Dept. of Geological Sciences, University of Illinois at Chicago.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3