Porous glass-ceramics cation exchangers: Cation exchange properties of porous glass-ceramics with skeleton of fast Li ion-conducting LiTi2(PO4)3 crystal

Author:

Hosono Hideo,Tsuchitani Fumihiko,Imai Kazunari,Abe Yoshihiro,Maeda Masunobu

Abstract

Lithium titanium orthophosphate LiTi2(PO4)3 (LTP) has attracted attention as a chemically stable fast Li+-conductor in ambient atmosphere. It was reported in our previous paper7 that monolithic microporous glass-ceramics with a skeleton of this crystal were successfully prepared from glasses in the pseudobinary system of LTP and Ca3(PO4)2. Here we report that these porous glass-ceramics (mean pore diameter: ∼40 nm; total specific surface area: ∼30 m2; porosity: ∼45 vol.%) show excellent cation exchange properties. Approximately 50% of Li+ ions in the materials are exchanged with monovalent ions with ionic radii smaller than 130 ppm in 1 h at room temperature. In particular, Li+ ions are selectively exchanged with Ag+ ions even in the presence of Na+ ions. The exchange rate in the porous glass-ceramics is larger by two orders of magnitude than that of sintered LTP. The ratio of these exchange rates is close to that of the total surface areas, indicating that most of the pores in porous LTP glass-ceramics are available for ion exchange reactions. These are the first porous glass-ceramics having excellent cation exchange properties.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3