Relaxation Phenomena and Thermodynamics of Liquids at Very High Pressures

Author:

Oliver W. F.

Abstract

ABSTRACTComplex liquid glass-forming systems ranging from those composed of simple molecules to polymer melts and amorphous polymers have been studied extensively as a function of temperature resulting in a basic understanding of liquid-state dynamics and glass transition phenomenology as these systems are supercooled to the vitreous state. An important aspect of this problem that remains largely unexplored, and that is relevant to the topic of this symposium, involves liquid-state dynamics and vitrification (as well as crystallization) in the regime of high pressure and high density. We describe work on “fragile” to “intermediate strength” simple organic glass-forming liquids where both temperature (T) and pressure (P) are varied. Diamond anvil cells are used to achieve pressures exceeding 10 GPa. Several optical and light scattering techniques are used to explore both static and dynamic properties of these systems. High-pressure Brillouin scattering enables us to model the longitudinal relaxation time in these systems as well as their equations of state. These can now be refined by direct measurements of the pressure dependence of the glass transition, Tg(P). Finally, we summarize depolarized light scattering studies which allow us to compare both the isobaric and isothermal evolution of structural (α) and fast (β) relaxation processes.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3