Low Temperature Annealing of Inkjet-Printed Silicon Thin-Films for Photovoltaic and Thermoelectric Devices

Author:

Drahi Etienne,Gupta Anshul,Blayac Sylvain,Saunier Sébastien,Lombez Laurent,Jubault Marie,Renou Gilles,Benaben Patrick

Abstract

ABSTRACTSilicon nanoparticles-based inks were investigated in respect of their suitability for photovoltaic and thermoelectric applications. Nanoparticles with a diameter ranging between 20 to 150 nm were functionalized in order to avoid oxidation as well as having a good stability in suspension. After inkjet-printing and drying, they were annealed up to 1000 °C under nitrogen atmosphere by both rapid thermal and microwave annealing. The influence of the annealing treatment on the structural, electrical, optical and thermal properties was investigated by Raman, SEM, electrical and optical measurements. SEM and Raman demonstrate evolution of the microstructure at temperature as low as 600 °C. Optical, electrical and thermal properties depend strongly on the annealing temperature and tend to exhibit a modification of physical properties above 800 °C when the smallest nanoparticles begin to melt. The annealing method has been identified to be of primary importance on the layer microstructure and its thermal behavior.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Printed Thermoelectrics;Advanced Materials;2022-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3