Correlating the Uptake and Dendritic Cell Activation by MDP-loaded Microparticles

Author:

Schmidt Stefanie,Roch Toralf,Mathew Simi,Ma Nan,Wischke Christian,Lendlein Andreas

Abstract

ABSTRACTPolymer-based, degradable microparticles (MP) are attractive delivery vehicles for vaccines as the polymer properties can be specifically tailored and the carrier can be loaded with adjuvant. For all newly developed carrier systems it is important to analyze cellular uptake efficiency and the specific effects mediated by the encapsulated agent when phagocytosed by the cells, which is barely reported so far. By the encapsulation of N-acetylmuramyl-L-alanyl-D-isoglutamine (MDP) labeled with fluoresceinisothiocyanat (FITC) in poly[(rac-lactide)-co-glycolide] (PLGA) MP, the MP was fluorescent and used to visualize the phagocytic uptake. Since encapsulated MDP can activate dendritic cells (DC) via the cytosolic nucleotide-binding oligomerization domain receptors (NOD), it can be investigated whether only cells that have phagocytosed the MP are activated or whether bystander effects occur, resulting in activation of cells, which did not take up MDP-FITC loaded MP. Here, it is demonstrated that increasing MP concentrations in the culture medium had no impact on the viability of DC and that the MP uptake efficiency was dose dependent. Interestingly, it could be shown by the CD86 expression, that only DC, which had engulfed MP, were significantly stronger activated than DC, which had not phagocytosed MDP-FITC loaded MP. On the one hand these results indicate that sufficient amounts of MDP were released from the PLGA carriers into the cytosol of the DC. On the other hand, based on the correlation of uptake and activation on the single cell level, minimal MP induced bystander effects may be expected for in vivo applications.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3