Biomimetic method for metallic nanostructured mesoscopic models fabrication

Author:

Strukov Gennady V.,Strukova Galina K.

Abstract

ABSTRACTVarious metallic structures of complex shape, resembling natural objects such as plants, mushrooms, and seashells, were produced when growing nanowires by means of pulsed current electroplating in porous membranes. These structures occur as the result of nanowires self-assembling (biomimetics) if the electroplating is continued after the nanowires reach the membrane surface. By varying the membrane geometry and the pulsed current parameters, and alternating electroplating from two baths with different electrolytes, various models were fabricated, including a hollow container with wall thickness of 10-30 nm. The possibility of shape regulation for models was demonstrated: in certain conditions, mushroom- and shell-like convex-concave models of the same kind were obtained. The hierarchical structure of models at the nano-, micro- and mesoscopic levels is shown through fragmentation and chemical etching. This biomimetic method suggests an analogy between the shape-forming processes of natural plants and their metallic models. Nanostructured mesoscopic objects of metals (Ag, Pd, Rh, Ni, Bi), alloys (PdNi, PdCo, PbIn) as well as their combinations (PdNi/ Pb, PdNi/ PbIn) were obtained. The technological simplicity of the present method makes it suitable for fabricating nanostructured materials that may be efficient in catalysis, superhydrophobic applications, medical filters, and nanoplasmonics.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3