Effects of matrix composition on instant release fractions from high burn-up nuclear fuel

Author:

Roth Olivia,Low Jeanett,Granfors Michael,Spahiu Kastriot

Abstract

ABSTRACTThe release of radionuclides from spent nuclear fuel in contact with water is controlled by two processes – the dissolution of the UO2 grains and the rapid release of fission products segregated either to the gap between the fuel and the cladding or to the UO2 grain boundaries. The rapid release is often referred to as the Instant Release Fraction (IRF) and is of interest for the safety assessment of geological repositories for spent fuel due to the potential dose contribution.Previous studies have shown that the instant release fraction can be correlated to the fission gas release (FGR) from the spent fuel. Studies comparing results from samples in the form of pellets, fragments, powders and a fuel rodlet have shown that the sample preparation has a significant impact on the instant release, indicating that the differentiation between gap release and grain boundary release should be further explored.Today, there are trends towards power uprates, longer fuel cycles and increasing burn-up putting additional requirements on the nuclear fuel. These requirements are met by the development of new fuel types, such as UO2 fuels containing dopants or additives. The additives and dopants affect fuel properties such as grain size and fission gas release. In the present study we have performed experimental leaching studies using two high burnup fuels with and without additives/dopants and compared the fuel types with respect to their instant release behavior. The results of the leaching of the samples for the 3 initial contact periods; 1, 7 and 23 days are reported here.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3