The influence of the co-monomer ratio of poly[acrylonitrile-co-(N-vinylpyrrolidone)]s on primary human monocyte-derived dendritic cells

Author:

Roch Toralf,Behl Marc,Zierke Michael,Pierce Benjamin F.,Kratz Karl,Weigel Thomas,Ma Nan,Lendlein Andreas

Abstract

ABSTRACTA major goal in the field of regenerative medicine is to improve our understanding of how biomaterial properties affect cells of the immune system. Systematic variation of defined chemical properties could help to understand which factors determine and modulate cellular responses. A series of copolymers poly[acrylonitrile-co-(N-vinylpyrrolidone)]s (P(AN-co-NVP)) served as model system, in which increasing hydrophilicity was adjusted by increasing the content related to the NVP based repeating units (nNVP) (0, 4.6, 11.8, 22.3, and 29.4 mol%). The influence of increasing nNVPcontents on cellular response of human primary monocyte derived dendritic cells (DC), which play a key role in the initiation of immune responses, was investigated. It was shown using the LAL-Test as well as a macrophage-based assay, that the materials were free of endotoxins and other microbial contaminations, which could otherwise bias the readout of the DC experiments. The increasing nNVPcontent led to a slightly increased cell death of DC, whereas the activation status of DC was not systematically altered by the different P(AN-co-NVP)s as demonstrated by the expression of co-stimulatory molecule and cytokine secretion. Similarly, under inflammatory conditions mimicked by the addition of lipopolysaccharides (LPS), neither the expression of co-stimulatory molecules nor the release of cytokines was influenced by the different copolymers. Conclusively, our data showed that this class of copolymers does not substantially influence the viability and the activation status of DC.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3