Field Dependent Carrier Transport Mechanisms in Metal-Insulator–Metal Devices with Ba0.8Sr0.2TiO3/ ZrO2 Heterostructured Thin Films as the Dielectric

Author:

Sahoo Santosh K.,Bakhru H.,Kumar Sumit,Misra D.,Wolden Colin A.,Mohapatra Y. N.,Agrawal D. C.

Abstract

ABSTRACTBa0.8Sr0.2TiO3/ZrO2 heterostructured thin films with different individual layer ZrO2 thicknesses are deposited on Pt/Ti/SiO2/Si substrates by a sol-gel process. The current versus voltage (I-V) measurements of the above multilayered thin films in metal-insulator-metal (MIM) device structures are taken in the temperature range of 310 to 410K. The electrical conduction mechanisms contributing to the leakage current at different field regions have been studied in this work. Various models are used to know the different conduction mechanisms responsible for the leakage current in these devices. It is observed that Poole-Frenkel mechanism is the dominant conduction process in the high field region with deep electron trap energy levels (φt) whereas space charge limited current (SCLC) mechanism is contributing to the leakage current in the medium field region with shallow electron trap levels (Et). Also, it is seen that Ohmic conduction process is the dominant mechanism in the low field region having activation energy (Ea) for the electrons. The estimated trap level energy varies from 0.2 to 1.31 eV for deep level traps and from 0.08 to 0.18 eV for shallow level traps whereas the activation energy for electrons in ohmic conduction process varies from 0.05 to 0.17 eV with the increase of ZrO2 sub layer thickness. An energy band diagram is given to explain the dominance of the various leakage mechanisms in different field regions for these heterostructured thin films.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3