Amorphous Bismuth: Structure-Property Relations and the Size of the Supercell

Author:

Mata-Pinzón Zaahel,Valladares Ariel A.,Valladares Alexander,Valladares R. M.

Abstract

ABSTRACTIt has been argued that for the simulation of amorphous materials, the larger the periodic supercell the better the representation. We contend that for certain properties there is a minimum supercell size above which one obtains a good representation of the topological and electronic collective properties of the material independent of the size. To show this contention we have chosen two periodic supercells of bismuth, one with 64 atoms and another with 216 atoms, which were amorphized using our undermelt-quench approach [1]. The originally crystalline structures were subjected to a heating-and-cooling process starting at an initial temperature of 300 K and linearly going up to 540 K, in 100 simulational steps, 4.5 K just below the melting temperature of bismuth (the undermelt section of the process) under normal conditions of pressure. Next, the sample was cooled down to 0K (the quench section of the process), in 225 simulational steps with the same absolute cooling rate as the heating process. Then the samples obtained were geometry-optimized to find the final metastable amorphous structures. These structures were analyzed by calculating their radial (pair) distribution functions, the plane angle distributions and the electron densities of states. Results will be presented that manifest that after proper normalization due to the difference in the number of atoms and the number of electron energy levels, the two structures are, for all practical purpose, the same, indicating that in this case, the size of the cell does not seem to play a major role in the properties determined.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3