Lithium-containing semiconductor crystals for radiation detection

Author:

Stowe Ashley C.,Cochran Joe,Bhattacharya Pijush,Tupitsyn Eugene,Wiggins Brenden,Groza Michael,Burger Arnold

Abstract

ABSTRACTSemiconductor materials have shown promise as ionizing radiation detection devices; however, to be used as a neutron detector, these materials require the addition of a nucleus with a large neutron absorption cross section (such as 10B or 6Li) to capture thermal neutrons and convert them into directly detectable particles. A semiconducting material that contains the neutron absorber within its regular stoichiometry has the potential to be more efficient than a layered or heterogeneous device at transferring the kinetic energy of the charged particle into the semiconducting material. One class of materials that has shown promise is Li-containing AIBIIIXVI2 compounds such as LiGaTe2, LiGaSe2, and LiInSe2. These materials have band gaps (2-3.5 eV) appropriate for room-temperature detection of thermal neutrons and would be the first detection material that is simultaneously, exquisitely sensitive to thermal neutrons; is insensitive to gammas; and acts as a direct conversion device. A vacuum distillation process provided high-purity lithium metal for AIBIIIXVI2 synthesis. Single crystals of sufficient bulk resistivity (grown for LiGaSe2 and LiInSe2LiInSe2) showed a distinct photo response as well as a clear response to alpha particles. Additional radiation measurements indicated that a 6 mm x 7 mm x 1.33 mm crystal of LiInSe2 detected gamma rays, and despite being composed of natural abundance lithium, responded to thermal neutrons as well.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LiInSe2 for Semiconductor Neutron Detectors;Frontiers in Physics;2020-04-09

2. Effect of Ga substitution for In in LiInSe2 crystals on carrier transport behaviors and alpha particles detection;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2020-01

3. Intrinsic lithium indium diselenide: Scintillation properties and defect states;Journal of Luminescence;2019-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3