Growth of silicon nanowires-based heterostructures and their plasmonic modeling

Author:

Li Yuan,Shi Wenwu,Dykes John C.,Chopra Nitin

Abstract

ABSTRACTComplex nanoscale architectures based on gold nanoparticles (AuNPs) can result in spatially-resolved plasmonics. Herein, we demonstrate the growth of silicon nanowires (SiNWs), heterostructures of SiNWs decorated with AuNPs, and SiNWs decorated with graphene shells encapsulated gold nanoparticles (GNPs). The fabrication approach combined CVD growth of nanowires and graphene with direct nucleation of AuNPs. The plasmonic or optical properties of SiNWs and their complex heterostructures were simulated using discrete dipole approximation method. Extinction efficiency spectra peak for SiNW significantly red-shifted (from 512 nm to 597 nm or 674 nm) after decoration with AuNPs, irrespective of the incident wave vector. Finally, SiNW decorated with GNPs resulted in incident wave vector-dependent extinction efficiency peak. For this case, wave vector aligned with the nanowire axial direction showed a broad peak at ∼535 nm. However, significant scattering and no peak was observed when aligned in radial direction of the SiNWs. Such spatially-resolved and tunable plasmonic or optical properties of nanoscale heterostructures hold strong potential for optical sensor and devices.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3