Environmental Impacts of Distributed Manufacturing from 3-D Printing of Polymer Components and Products

Author:

Kreiger Megan,Pearce Joshua M.

Abstract

ABSTRACTAlthough additive layer manufacturing is well established for rapid prototyping the low throughput and historic costs have prevented mass-scale adoption. The recent development of the RepRap, an open source self-replicating rapid prototyper, has made low-cost 3-D printers readily available to the public at reasonable prices (<$1,000). The RepRap (Prusa Mendell variant) currently prints 3-D objects in a 200x200x140 square millimeters build envelope from acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA). ABS and PLA are both thermoplastics that can be injection-molded, each with their own benefits, as ABS is rigid and durable, while PLA is plant-based and can be recycled and composted. The melting temperature of ABS and PLA enable use in low-cost 3-D printers, as these temperature are low enough to use in melt extrusion in the home, while high enough for prints to retain their shape at average use temperatures. Using 3-D printers to manufacture provides the ability to both change the fill composition by printing voids and fabricate shapes that are impossible to make using tradition methods like injection molding. This allows more complicated shapes to be created while using less material, which could reduce environmental impact.As the open source 3-D printers continue to evolve and improve in both cost and performance, the potential for economically-viable distributed manufacturing of products increases. Thus, products and components could be customized and printed on-site by individual consumers as needed, reversing the historical trend towards centrally mass-manufactured and shipped products. Distributed manufacturing reduces embodied transportation energy from the distribution of conventional centralized manufacturing, but questions remain concerning the potential for increases in the overall embodied energy of the manufacturing due to reduction in scale. In order to quantify the environmental impact of distributed manufacturing using 3-D printers, a life cycle analysis was performed on a plastic juicer. The energy consumed and emissions produced from conventional large-scale production overseas are compared to experimental measurements on a RepRap producing identical products with ABS and PLA. The results of this LCA are discussed in relation to the environmental impact of distributed manufacturing with 3-D printers and polymer selection for 3-D printing to reduce this impact. The results of this study show that distributed manufacturing uses less energy than conventional manufacturing due to the RepRap's unique ability to reduce fill composition. Distributed manufacturing also has less emissions than conventional manufacturing when using PLA and when using ABS with solar photovoltaic power. The results of this study indicate that open-source additive layer distributed manufacturing is both technically viable and beneficial from an ecological perspective.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3