The Thermal Effects of CMP as a Particle Augmented Mixed Lubrication Tribosystem

Author:

Srivastava Gagan,Higgs C . Fred

Abstract

ABSTRACTMost chemical mechanical polishing (CMP) researchers assume that the polishing occurs in the mixed-lubrication regime, where the applied load on the wafer is supported by the hydrodynamic slurry pressure and the contact stress generated during the pad-wafer contact. Consequently, the particle augmented mixed lubrication (PAML) approach has been employed as an extremely high-fidelity asperity-scale mixed-lubrication CMP model in the past. Recently, a more computationally efficient PAML approach, PAML-lite, which considers the slurry’s fluid and particle dynamics, the pad/wafer contact mechanics, and the resulting material removal, was introduced. The current work presents the PAML-lite framework with the isothermal assumption relaxed. As a result, wafer-scale interfacial temperatures during CMP can be predicted by considering asperity heating and dissipation of the heat into the solid and fluid media in the sliding contact.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3