Dislocation Dynamics in Intermetallic and Oxide Dispersion Strengthened (ODS) Alloys

Author:

Messerschmidta Ulrich,Gudera Susanne,Häusslera Dietrich,Bartscha Martin

Abstract

ABSTRACTIn situ straining experiments in a high-voltage electron microscope allow the observation of the dynamic behaviour of individual dislocations. Such experiments have been performed on the intermetallic alloys NiAl, NiAl containing 0.2 at% Ta, α-TiAl, and MoSi2, and the oxide dispersion strengthened (ODS) alloys INCOLOY MA956 and INCONEL MA754 in a wide range of temperatures. There are many similarities in the dynamic behaviour of dislocations in the different materials. In the intermetallic alloys, a transition occurs between low temperature mechanisms and a viscous motion in the temperature range of the flow stress anomaly. The viscous motion at high temperatures can be explained by diffusion processes in the dislocation cores, whichcan be described by the theory of the Cottrell effect. The diffusing species can be quite different, alloying components or intrinsic point defects like vacancies and antisite defects existing in the lattice or only in the dislocation cores. If the dislocations are straight and crystallographically oriented during their motion, they may be dissociated and move by a succession of glide and conservative climb between the partial dislocations. In the ODS alloys, the dislocations move between the oxide particles again in a viscous way. The relation between the dislocation dynamics and the strain rate sensitivity of the flow stress is discussed for thedifferent materials.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference19 articles.

1. High-temperature straining stage for in situ experiments in the high-voltage electron microscope

2. Plastic deformation of MoSi2 single crystals

3. 13. Christoph U. and Appel F. , Materials Research Society Fall Meeting 2000, Abstract N7.1

4. Dislocation processes during the deformation of MoSi2 single crystals in a soft orientation

5. 15. Srinivasan R. , Daw M.S. , Noebe R.D. and Mills M.J. , to bepublished in Phil. Mag. A

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3