Respective Roles of Surface, Grain Boundary and Volume Diffusions in Driving Structural, Microstructural and Magnetic Properties of MBE Alloy Thin Films

Author:

Pierron-Bohnes V.,Maret M.,Bouzidi L.,Cadeville M.C.

Abstract

ABSTRACTThe co-deposition of two metals using a molecular beam epitaxy (MBE) technique at various growth temperatures (TG) yields single-crystal alloy thin films with a columnar microstructure whose structural and magnetic properties can be different from those of the corresponding equilibrium bulk alloys. A general overview of results obtained in hcp Co-Ru and hcp or fcc Co-Pt thin films grown on a hcp (0002) substrate will be presented. Around the A 3B composition (A = Co, B = Ru or Pt) the films display a composition modulation along the growth direction whose amplitude is strongly dependent of TG passing through a maximum at respectively 600 and 650 K. This long range order (LRO) that does not exist in equilibrium phases is explained as resulting from the competition between two phenomena occurring simultaneously during the growth process: a surface effect driven by surface interactions and surface diffusion that tends to enrich the surface layer in one element (Co, Ru or Pt segregation) and a bulk effect driven by bulk interactions and bulk diffusion that tends to restore the bulk equilibrium phase when the bulk diffusion becomes efficient during the growth time. A thermally activated model that takes into account both surface and bulk diffusion during the growth time reproduces quite satisfactorily the TG dependencies of the LRO in Co3Ru and Co3Pt as well as that of the uniaxial magnetic anisotropy in CoPt3.At high TG ( > 800 K) or after ex situ anneals, the diffusion of the Ru buffer through the grain boundaries of the columnar microstructure, that occurs before the inside grain diffusion, isolates the columns magnetically and is thought to be responsible of the large observed coercive field and of a substantial modification of the magnetic domain shapes.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3