Key Parameters of Glass Dissolution in Integrated Systems

Author:

Vernaz Etienne Y.,Godon Nicole

Abstract

ABSTRACTLeaching cells were designed to test the alterability of nuclear waste glasses under conditions closely simulating an actual geological repository. This paper summarizes the results of twenty long-duration tests simulating a variety of storage conditions. The effects of the backfilling materials, the canister, glass cracking and crystallization, a activity and the nature of the host rock are discussed. Moreover, an experiment has been in progress for over seven years in a granite medium; after three years the corrosion rate dropped to about 2 × 10−3 g m−2 d−1, and is sustained only by the water renewal due to sampling at regular intervals. These results constitute a valuable data base on R7T7 glass alteration in geological media at 90°C. Glass alteration mechanisms described in pure water appear to be applicable to a hard rock medium. In clay and salt, however, considerable work remains to be done before environmental factors can be taken into account in an overall dissolution model.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference8 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3