Basic Research for Assessment of Geologic Nuclear Waste Repositories: What Solubility and Speciation Studies of Transuranium Elements Can Tell US

Author:

Nitsche Heino

Abstract

ABSTRACTSolubility and speciation data are important in understanding aqueous radionuclide transport through the geosphere. They define the source term for transport retardation processes such as sorption and colloid formation. Solubility and speciation data are useful in verifying the validity of geochemical codes that are part of predictive transport models. Results from solubility and speciation experiments of 237NpO2+, 239Pu4+, and 241Am3+/Nd3+ in J-13 groundwater (from the Yucca Mountain region, Nevada, which is being investigated as a candidate high-level nuclear waste disposal site) at three different temperatures (25°, 60°, and 90°C) and pH values (6, 7, and 8.5) are presented and compared with published modeling calculations. The comparison results indicate that there is a great need for experimental data on the solubility and speciation of transuranium elements under a wide range of conditions, for example, pH, Eh, temperature, and composition of groundwaters. Additionally, the influence of alpha radiation and the radiolysis of the secondary transuranium solids on solubility and speciation should be studied. Solubility studies and model calculations should be extended to other important long-lived nuclear waste radionuclides such as nickel, zirconium, cadmium, radium, and thorium.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference14 articles.

1. Determination of plutonium oxidation states at trace levels pertinent to nuclear waste disposal

2. 11. Silva R. J. and Nitsche H. , Carbonate Complexation of PuOV) in Aqueous Solution, presented at the 189th American Chemical Society National Meeting, Miami Beach, Florida, 1985 (unpublished).

3. Summary report on the geochemistry of Yucca Mountain and environs

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3