Author:
Gupta S.,Weiner B.R.,Morell G.
Abstract
Results are reported on the electron field emission properties of microcrystalline diamond thin films grown on molybdenum substrates by the sulfur (S)-assisted hot-filament chemical vapor deposition technique using methane (CH4), hydrogen sulfide (H2S), and hydrogen (H2) gas mixtures. Electron field-emission measurements revealed that the S-incorporated microcrystalline diamond thin films have substantially lower turn-on fields and steep rising currents as compared to those grown without sulfur. The field-emission properties for the S-incorporated films were also investigated systematically as a function of substrate temperature (TS). Lowest turn-on field achieved was observed at around 12.5 V/μm for the samples grown at TS of 700°C with 500 ppm H2S. To establish the property-structure correlation, we analyzed the films with multiple characterizations include scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy (RS), and x-ray photoelectron spectroscopy (XPS) techniques. It was found that sulfur addition causes significant microstructural changes in microcrystalline diamond thin films. S-assisted films show smoother, coarse-grained surfaces (non-faceted) than those grown without it (well-faceted) and a relatively higher content of non-diamond carbon (primarily sp2-bonded C). RS and investigations on the morphology by SEM and AFM indicated the increase of sp2 C content with increasing TS followed by a morphological transition at 700°C in the films. XPS investigations also showed the incorporation of S in the films up to a few atomic layers. It is believed that the electron-emission properties are governed by the sulfur incorporation during the chemical vapor deposition process. Although most of the S is expected to be electrically inactive, under the high doping conditions hereby used, it is shown rather indirectly through multiple characterizations that there may be some amount of S in donor states. Therefore the results are discussed in terms of the dual role of S whereby it induces the structural defects in the form of enhanced sp2 C content at the expense of diamond quality and a possibility of availability of conduction electrons. In fact the latter finding is supported through room temperature electrical conductivity measurements.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献