Mechanical methods to determine layer compliances within multilayered composites

Author:

Malzbender J.,Steinbrech R. W.

Abstract

A comparison of bending and compressive/tensile loading cases of multilayered composites is given. Bending perpendicular to the layer interfaces is suggested as a sensitive and experimentally convenient method for determining the elastic modulus of compliant isotropic layers within a multilayered composite. Different approaches to analyze the strain and compliance behavior of the composite and individual layers are derived. Ranking of the relevant equations with respect to strain sensitivity is made, which favors the bending test perpendicular to the layer interfaces. The derived relationships permit a prediction of the bending behavior and the flexural rigidity of the composite. Furthermore, the properties of a layer within the structure can be determined. Limitations that exist for the bending perpendicular to the layer interfaces in the case of low stiffness of the layers can be overcome using either a compressive or a tensile loading mode. Application of the formulas to buckling and interfacial delamination is considered. Materials, such as plasma-sprayed thermal barrier coatings, that are supposed to behave elastically different in tension and compression are given special consideration. Although determination of elastic moduli is the main interest, in the case of known elastic moduli, the formulas can be used to determine the thickness of individual layers within a composite structure.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3