Promoting secondary nucleation using methane modulations during diamond chemical vapor deposition to produce smoother, harder, and better quality films

Author:

Ali N.,Neto V.F.,Gracio J.

Abstract

In this paper, we present results obtained from a comparison study relating to the deposition of diamond films using two processes, namely, time-modulated chemical vapor deposition (TMCVD) and conventional CVD. Polycrystalline diamond films were deposited onto silicon substrates using both hot-filament CVD and microwave plasma CVD systems. The key feature of TMCVD is that it modulates methane (CH4) flow during diamond CVD, whereas in conventional CVD the CH4 flow is kept constant throughout the deposition process. Films grown using TMCVD were smoother, harder, and displayed better quality than similar films grown using constant CH4 flow during CVD. The advantage of using TMCVD is that it promotes secondary nucleation to occur on existing diamond crystals. Pulsing CH4, consecutively, at high and low concentrations allows the depositing film to maintain its quality in terms of diamond-carbon phase. Films grown under constant CH4 flow during diamond CVD displayed a columnar growth mode, whereas with the time modulated films the growth mode was different. The mechanism of film growth during TMCVD is presented in this paper. The growth rate of films obtained using the hot filament CVD system with constant CH4 flow was higher than the growth rate of time modulated films. However, using the microwave-plasma CVD system, the effect was the contrary and the time-modulated films were grown at a higher rate. The growth rate results are discussed in terms of substrate temperature changes during TMCVD.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3