Oxyanion Substituted Ettringites: Synthesis and Characterization; and their Potential Role In Immobilization of As, B, Cr, Se and V

Author:

Kumarathasan Premkumari,McCarthy Gregory J.,Hassett David J.,Pflughoeft-Hassett Debra F.

Abstract

AbstractLong-term batch leaching studies of composites of lignite combustion and gasification ashes with a calcium-based scrubber waste have shown the prominent formation of an ettringite structure phase, accompanied by reductions in solution concentrations of potentially hazardous elements such as boron and selenium. The possibility that oxyanions such as arsenate, borate, chromate, molybdate, selenate and vanadate might substitute for sulfate in the ettringite structure has been explored. There are literature reports of fully substituted borate, chromate and selenate [ettringites]*, and of two minerals with partial borate for sulfate substitution. X-ray diffraction phase pure products with chromate and selenate, substituted completely for the sulfate in ettringite, and with arsenate, borate and vanadate partially substituted for sulfate, have been synthesized at room temperature by mixing soluble Ca, Al and sulfate sources and maintaining a pH> 12 with NaOH additions. Attempts to substitute substantial amount of molybdate for sulfate were unsuccessful. The resulting phases were characterized chemically by ICAP spectrometry, ion chromatography and thermal analysis, and for phase purity and unit cell size by XRD. The speciation of the oxyanions in the substituted [ettringite] were confirmed by FTIR spectrometry. In solid solutions, the sulfate/oxyanion ratio was greater in the precipitated solid than in the synthesis solution. Chemical analyses of the [ettringites] did not give simple stoichiometries analogous to Ca6Al2(SO4)(OH)12 ·26H2O. Because nonstoichiometry can be attributed to numerous possibilities for charge balance and defects, structural formulae of the oxyanion substituted [ettringites] could not be established.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference23 articles.

1. 10. Kumarathasan P. and McCarthy G.J. , in Fly Ash and Coal Conversion By-Products: Characterization. Utilization and Disposal III, Mat. Res. Soc. Symp. Proc. Vol.86, 109–112 (1987).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3