Solid-State and Vacuum Thermionic Energy Conversion

Author:

Shakouri Ali,Bian Z.,Singh R.,Zhang Y.,Vashaee D.,Humphrey T. E.,Schmidt H.,Zide J. M.,Zeng G.,Bahk J-H.,Gossard A. C.,Bowers J. E.,Rawat V.,Sands T. D.,Kim W.,Singer S.,Majumdar A.,Mayer P. M.,Ram R. J.,Russel K. J.,Narayanamurti V.,Koeck F. A. M.,Li X.,Park J.-S.,Smith J. R.,Bilbro G. L.,Davis R. F.,Sitar Z.,Nemanich R. J.

Abstract

ABSTRACTA brief overview of the research activities at the Thermionic Energy Conversion (TEC) Center is given. The goal is to achieve direct thermal to electric energy conversion with >20% efficiency and >1W/cm2power density at a hot side temperature of 300–650C. Thermionic emission in both vacuum and solid-state devices is investigated. In the case of solid-state devices, hot electron filtering using heterostructure barriers is used to increase the thermoelectric power factor. In order to study electron transport above the barriers and lateral momentum conservation in thermionic emission process, the current-voltage characteristic of ballistic transistor structures is investigated. Embedded ErAs nanoparticles and metal/semiconductor multilayers are used to reduce the lattice thermal conductivity. Cross-plane thermoelectric properties and the effective ZT of the thin film are analyzed using the transient Harman technique. Integrated circuit fabrication techniques are used to transfer the n- and p-type thin films on AlN substrates and make power generation modules with hundreds of thin film elements. For vacuum devices, nitrogen-doped diamond and carbon nanotubes are studied for emitters. Sb-doped highly oriented diamond and low electron affinity AlGaN are investigated for collectors. Work functions below 1.6eV and vacuum thermionic power generation at temperatures below 700C have been demonstrated.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference44 articles.

1. 32 Mayer P. M. , manuscript submitted to Applied Physics Letters 2006.

2. Enhanced solid-state thermionic emission in nonplanar heterostructures

3. Current transport in InP/In0.5(Al0.6Ga0.4)0.5P self-assembled quantum dot heterostructures using ballistic electron emission microscopy/spectroscopy

4. Beating the alloy limit of thermal conductivity in crystalline material;Kim;Physical Review Letters,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3